

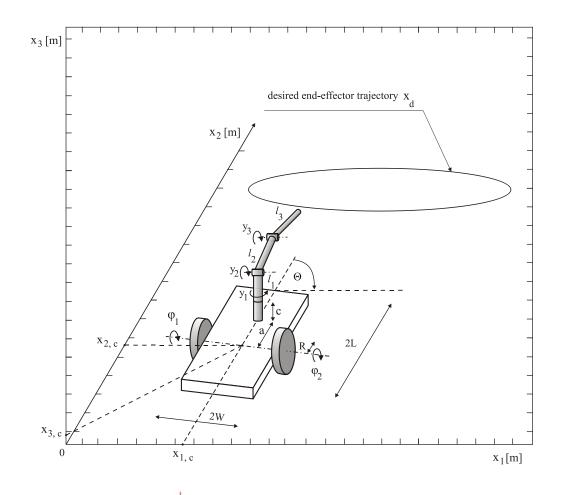
Workshop on Space Microelectronics, WoSM (conjunction with 4th Conference on Aerospace Robotics, CARO4) Zielona Góra, July 8th, 2022

HLS approach for robust control algorithm implementation in FPGA

Dariusz Janiszewski¹, Alessandro Veronesi², Rizwan Tariq Syed², Marek Węgrzyn³, Krzysztof Piotrowski² and Marek Banaszkiewicz³

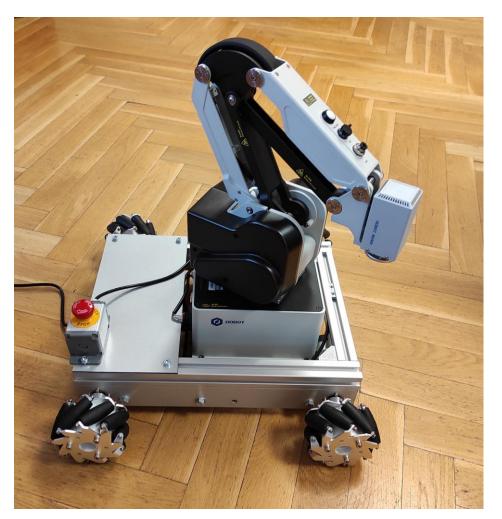
¹Poznań University of Technology, ²IHP GmbH, ³CBK PAN

- 1. Control algorithm
- 2. Modeling and simulation
- 3. FPGA implementation of algorithms
- 4. Results
- 5. Conclusions



ROBUST CONTROL ALGORITHM

The problem to be solved:


$$q = (x_{1,c}, x_{2,c}, x_{3,c}, \varphi_1, \varphi_2, y_1, y_2, y_3)^T$$

MOBILE SPACE ROBOT

ROBUST CONTROL OF SPACE MANIPULATORS

- Modeling
 - differential equations, Runge Kutta method
 - Matlab and C languages
- Simulation
 - Matlab
 - C-based program
- Implementation
 - Microprocessor system (e.g., Raspeberry)
 - C-based program

MOBILE *SPACE* **ROBOT** – FPGA-based Controller

(Xilinx Kintex Ultrascale XQRKU060 Space-Grade FPGA, e.g., ADA-SDEV-KIT2)

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung

MOBILE SPACE ROBOT – XILINX FPGA ZCU102

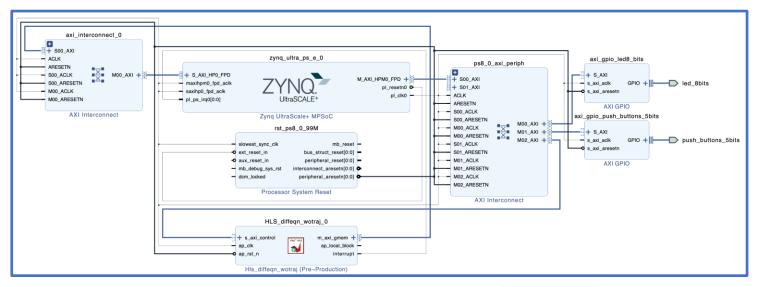
MOBILE SPACE ROBOT C MODEL, DIFFERENTIA EQUATION SOLVER PROBLEM

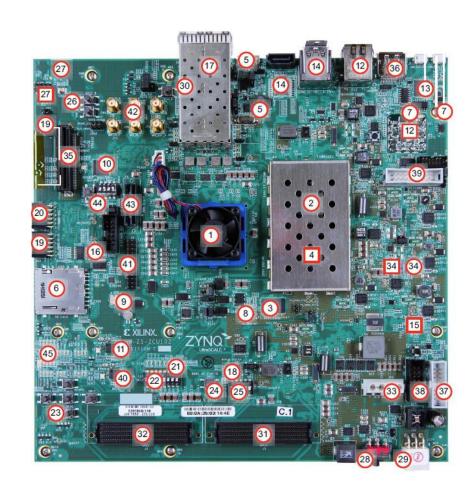
#define N_ELEMENTS 19 // State vector size #define N_DATA 13 // Data vector (XA) size #define N_VSTU 11 // 8 thrusters + 3 joints

// xn - current time [sec]

// % XA	-	is	the	state	vector	
---------	---	----	-----	-------	--------	--

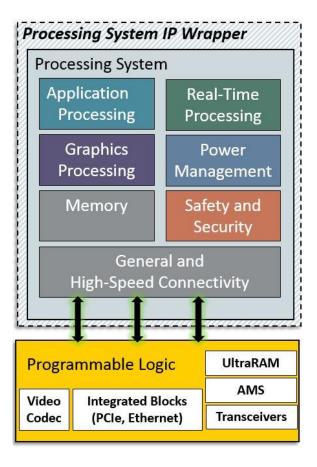
,,		
// %	x[0] -	x-position of the satellite's center of mass [m]
// %	x[1] -	y-position of the satellite's center of mass [m]
// %	x[2] -	satellite orientation [rad]
// %	x[3] -	angular position of the first joint [rad]
// %	x[4] –	angular position of the second joint [rad]
// %	x[5] -	angular position of the third joint [rad]
// %	x[6] –	the first derivative of $x[0]$ [m/sec]
// %	x[7] –	the first derivative of $x[1]$ [m/sec]
// %	x[8] -	the first derivative of x[2] [rad/sec]
// %	x[9] –	the first derivative of x[3] [rad/sec]
// %	x[10] -	the first derivative of x[4] [rad/sec]
// %	x[11] -	the first derivative of x[5] [rad/sec]
// %	x[12] -	mass of the system [kg]

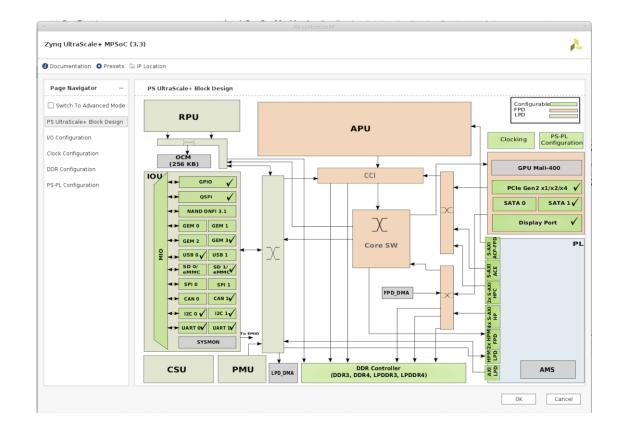




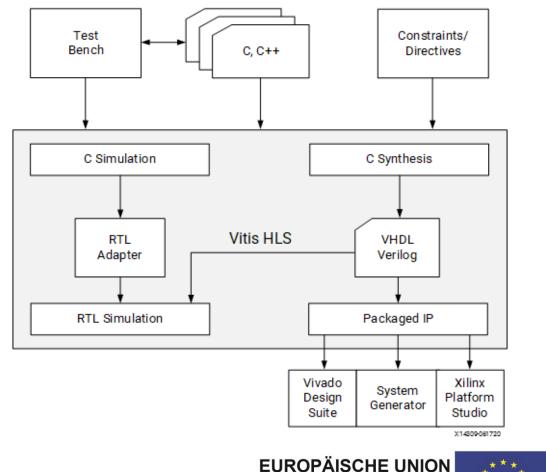
FPGA IDEA OF IMPLEMENTATION

/**
* @brief Discrete robot model with controller
*
* @param t (input) current time
* @param x (input) manipulator state (x)
* @param dx (output) state increase (dx)
* @param <u>vstu</u> (output) control vector
* @param <u>xd</u> (input) desired position
* @param <u>xpd</u> (input) desired first derivative of position
* @param xppd (input) desired secound derivative of position
* @return void
*/
<pre>void diffeqn_wotraj (double t, float *x, float *dx, float *vstu, float *xd, float *xpd, float *xppd) { float fq[6 * 1], J[6 * 6], Mm[6 * 6], Cm[6 * 1], Gm[6 * 1], Bm[6* 11], Dm[6 * 1]; //float xd[6 * 1], xpd[6 * 1], xppd[6 * 1];</pre>
<pre>kinematics_c(t, x, fq, J);</pre>
dynamics0_c(t, x, Mm, Cm, Gm, Bm, Dm);
<pre>//trajectory_c(t, xd, xpd, xppd);</pre>
controller_c(t, x, dx, fq, J, Mm, Cm, Gm, Bm, Dm, xd, xpd, xppd, vstu);

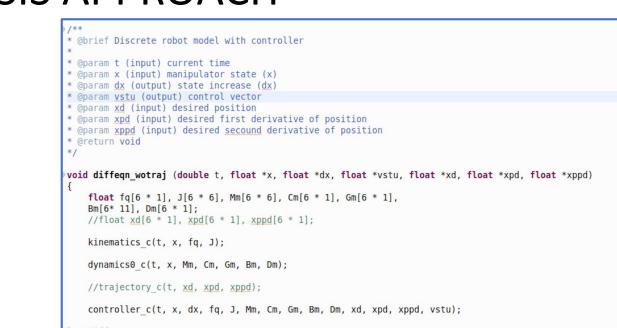



UNIA EUROPEJSKA Europejski Fundusz Rozwoju Regionalnego

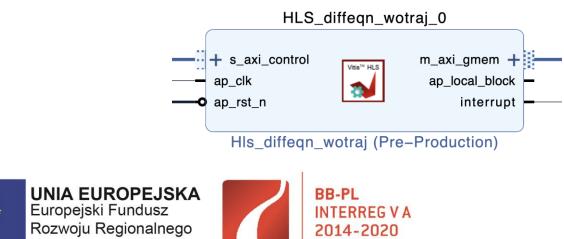
HIGH LEVEL SYNTHESIS APPROACH PROCESSOR SYSTEM + PROGRAMMABLE LOGIC



HIGH LEVEL SYNTHESIS APPROACH

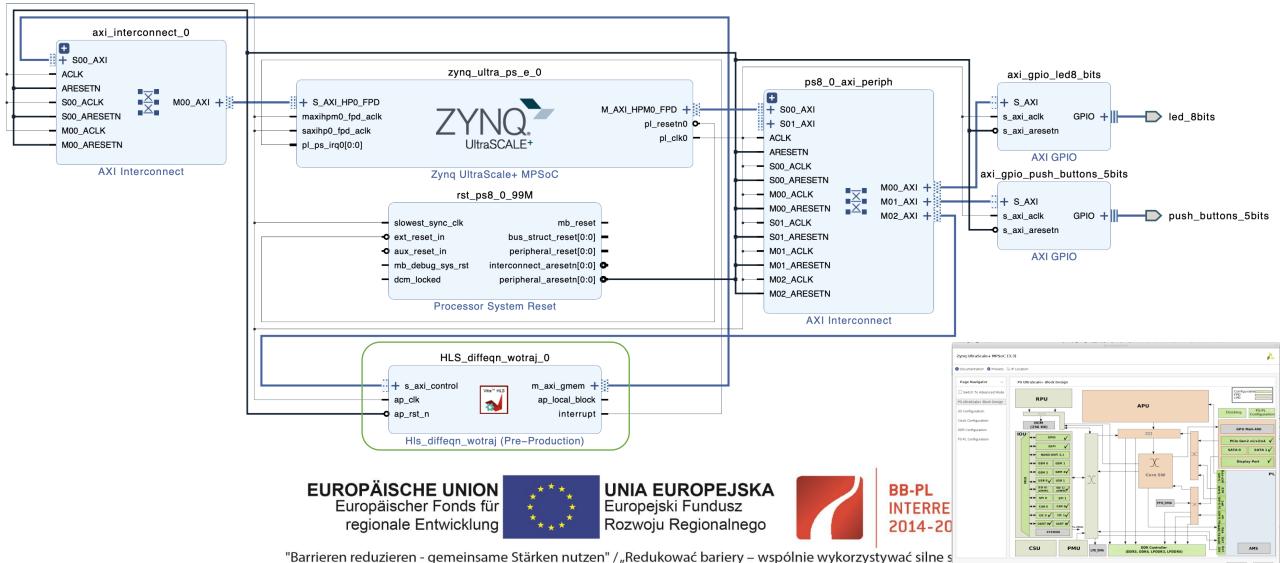

HLS DESIGN FLOW

HLS

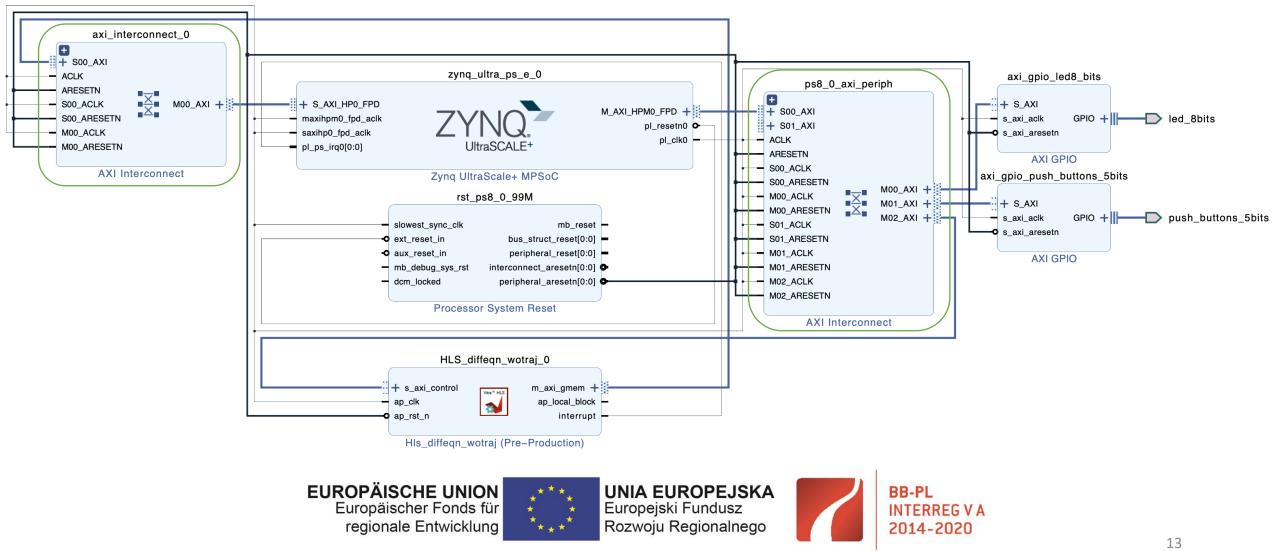


Europäischer Fonds für

regionale Entwicklung



HIGH LEVEL SYNTHESIS APPROACH PROCESSOR SYSTEM + PROGRAMMABLE LOGIC



OK Cancel

HIGH LEVEL SYNTHESIS APPROACHAXI CONTROL AND AXI GLOBAL MEMORY

} //diffeqn

HIGH LEVEL SYNTHESIS APPROACH HLS CODDING FLOW – INTERFACE

<pre>>/** * @brief Discrete robot model with controller * * @param t (input) current time * @param x (input) manipulator state (x) * @param dx (output) state increase (dx) * @param vstu (output) control vector * @param xd (input) desired position * @param xpd (input) desired first derivative of position * @param xppd (input) desired secound derivative of position * @return void */</pre>	<pre>extern "C" void HLS_diffeqn_wotraj(const double *t, const float *x, float *dx, float *vstu, float const *xd, float const *xpd, const float *xpd) {</pre>
<pre>void diffeqn_wotraj (double t, float *x, float *dx, float *vstu, float *xd, float *xpd, float *xpd) { float fq[6 * 1], J[6 * 6], Mm[6 * 6], Cm[6 * 1], Gm[6 * 1], Bm[6* 11], Dm[6 * 1]; //float xd[6 * 1], xpd[6 * 1], xppd[6 * 1]; kinematics_c(t, x, fq, J); dynamics0_c(t, x, Mm, Cm, Gm, Bm, Dm); //trajectory_c(t, xd, xpd, xppd); controller_c(t, x, dx, fq, J, Mm, Cm, Gm, Bm, Dm, xd, xpd, vstu); } //diffeqn</pre>	HLS_diffeqn_wotraj_0 + s_axi_control ap_clk ap_rst_n Hls_diffeqn_wotraj (Pre-Production)

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung

HIGH LEVEL SYNTHESIS APPROACH HLS CODDING FLOW – DATAFLOW

*/** * @brief Discrete robot model with controller

* @param t (input) current time * @param x (input) manipulator state (x) * @param dx (output) state increase (dx) * @param vstu (output) control vector

- * @param xd (input) desired position
- * @param <u>xpd</u> (input) desired first derivative of position
- * @param xppd (input) desired secound derivative of position

```
* @return void
*/
```

void diffeqn_wotraj (double t, float *x, float *dx, float *vstu, float *xd, float *xpd, float *xppd)
{
 float fq[6 * 1], J[6 * 6], Mm[6 * 6], Cm[6 * 1], Gm[6 * 1],

Bm[6* 11], Dm[6 * 1];
//float xd[6 * 1], xpd[6 * 1], xppd[6 * 1];

kinematics_c(t, x, fq, J);

dynamics0_c(t, x, Mm, Cm, Gm, Bm, Dm);

//trajectory_c(t, xd, xpd, xppd);

controller_c(t, x, dx, fq, J, Mm, Cm, Gm, Bm, Dm, xd, xpd, xppd, vstu);

} //diffeqn

ouble buf_t;

float buf_x[X_SIZE];
float buf_dx[X_SIZE];
float buf_vstu[VSTU_SIZE];
float buf_xd[XD_SIZE];
float buf_xd[XD_SIZE];
float buf_xpd[XD_SIZE];

float fq[XSS_SIZE * 1], J[XSS_SIZE * XSS_SIZE], Mm[XSS_SIZE * XSS_SIZE], Cm[XSS_SIZE * 1], Gm[XSS_SIZE * 1], Bm[XSS_SIZE * VSTU_SIZE], Dm[XSS_SIZE * 1];

//INPUT buffers
memcpy(buf_x, x, X_SIZE*sizeof(float)); //input
//memcpy(buf_dx, dx, X_SIZE*sizeof(float)); //output
//memcpy(buf_vstu, vstu, VSTU_SIZE*sizeof(float)); //output
memcpy(buf_xd, xd, XD_SIZE*sizeof(float)); //input
memcpy(buf_xpd, xpd, XD_SIZE*sizeof(float)); //input
memcpy(buf_xppd, xppd, XD_SIZE*sizeof(float)); //input

//FUNCTIONS
kinematics_c(buf_t, buf_x, fq, J);
dynamics0_c(buf_t, buf_x, Mm, Cm, Gm, Bm, Dm);
//trajectory_c(buf_t, buf_xd, buf_xpd, buf_xppd);
controller_c(buf_t, buf_x, buf_dx, fq, J, Mm, Cm, Gm, Bm, Dm, buf_xd, buf_xpd, buf_xppd, buf_vstu);

//OUTPUT buffers
//memcpy(x, buf_x, X_SIZE*sizeof(float)); //input
memcpy(dx, buf_dx, X_SIZE*sizeof(float)); //output
memcpy(vstu, buf_vstu, VSTU_SIZE*sizeof(float)); //output
//memcpy(xd, buf_xd, XD_SIZE*sizeof(float)); //input
//memcpy(xpd, buf_xpd, XD_SIZE*sizeof(float)); //input

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung

UNIA EUROPEJSKA Europejski Fundusz Rozwoju Regionalnego

HLS DIRECT METHOD PERFORMANCE

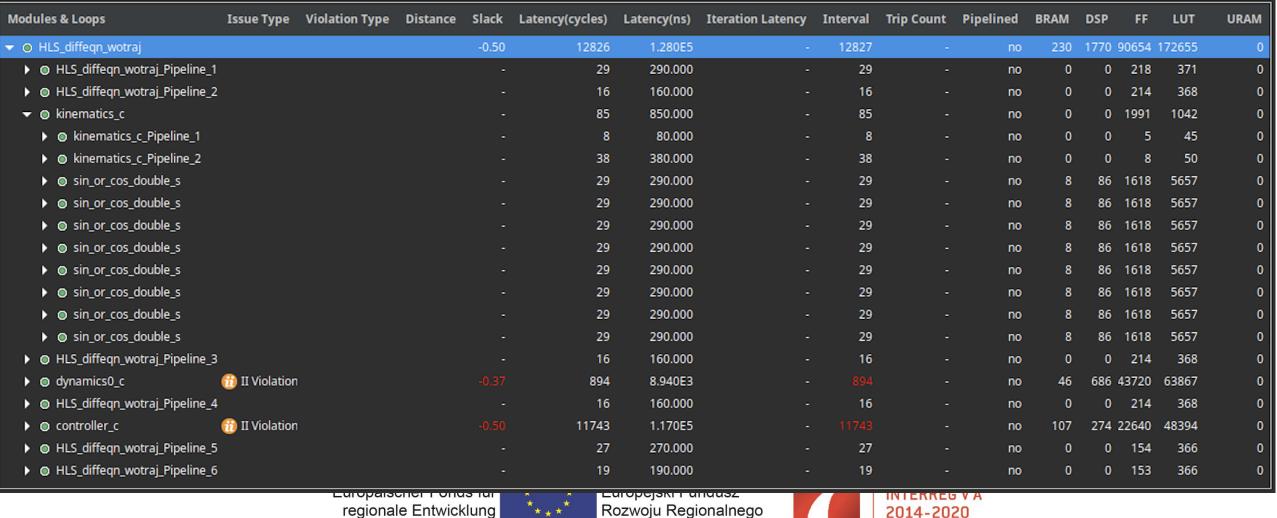
HIGH LEVEL SYNTHESIS APPROACH

void diffeqn_wotraj (double t, float *x, float *dx, float *vstu, float *xd, float *xpd, float *xppd)
{
 float fq[6 * 1], J[6 * 6], Mm[6 * 6], Cm[6 * 1], Gm[6 * 1],
 Bm[6* 11], Dm[6 * 1];
 //float xd[6 * 1], xpd[6 * 1], xppd[6 * 1];
 kinematics_c(t, x, fq, J);
 dynamics0_c(t, x, Mm, Cm, Gm, Bm, Dm);
 //trajectory_c(t, xd, xpd, xppd);
 controller_c(t, x, dx, fq, J, Mm, Cm, Gm, Bm, Dm, xd, xpd, xppd, vstu);

} //diffeqn

Modules & Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP	FF	LUT	URAM
▼					12826	1.280E5		12827	-	no	230	1770	90654	172655	0
HLS_diffeqn_wotraj_Pipeline_1					29	290.000		29		no	0	0	218	371	0
HLS_diffeqn_wotraj_Pipeline_2					16	160.000		16		no	0	0	214	368	0
 kinematics_c 				-	85	850.000		85	-	no	0	0	1991	1042	0
HLS_diffeqn_wotraj_Pipeline_3				-	16	160.000	-	16	-	no	0	0	214	368	0
 ø dynamics0_c 	📆 II Violation				894	8.940E3	-		-	no	46	686	43720	63867	0
HLS_diffeqn_wotraj_Pipeline_4					16	160.000		16		no	0	0	214	368	0
o controller_c	🔞 II Violation			-0.50	11743	1.170E5	-		•	no	107	274	22640	48394	0
HLS_diffeqn_wotraj_Pipeline_5				-	27	270.000		27	-	no	0	0	154	366	0
HLS_diffeqn_wotraj_Pipeline_6				-	19	190.000	-	19	(=	no	0	0	153	366	0

EUROPÄISCHE UNION Europäischer Fonds für regionale Entwicklung



UNIA EUROPEJSKA Europejski Fundusz Rozwoju Regionalnego

HIGH LEVEL SYNTHESIS APPROACH HLS DIRECT METHOD PERFORMANCE ANALYSIS

HIGH LEVEL SYNTHESIS APPROACH HLS DIRECT METHOD PERFORMANCE ANALYSIS

Modules & Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP	FF	LUT	URAM
▼ ● HLS_diffeqn_wotraj				-0.50	12826	1.280E5	-	12827	-	no	230	1770	90654	172655	0
HLS_diffeqn_wotraj_Pipeline_1					29	290.000		29		no	0	0	218	371	0
HLS_diffeqn_wotraj_Pipeline_2					16	160.000		16		no	0	0	214	368	0
Minematics_c					85	850.000		85		no	0	0	1991	1042	0
HLS_diffeqn_wotraj_Pipeline_3					16	160.000		16		no	0	0	214	368	0
					894	8.940E3		894		no	46	686	43720	63867	0
ø dynamics0_c_Pipeline_1					8	80.000		8		no	0	0	5	45	0
Ø dynamics0_c_Pipeline_2					8	80.000		8		no	0	0	5	45	0
ø dynamics0_c_Pipeline_3					68	680.000		68		no	0	0	9	51	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
ø dynamics0_c_Pipeline_4					14	140.000		14		no	0	0	6	48	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
Ø dynamics0_c_Pipeline_5					14	140.000		14		no	0	0	6	48	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
Ø dynamics0_c_Pipeline_6					9	90.000		9		no	0	0	5	45	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
MultMMc					42	420.000		42		no	0	3	285	343	0
multMMc					42	420.000		42		no	0	3	285	343	0
MultMMc					42	420.000		42		no	0	3	285	343	0
MultMMc					42	420.000		42		no	0	- 3	285	343	0
MultMMc					42	420.000		42		no	0	3	285	343	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
sin_or_cos_double_s					29	290.000		29		no	8	86	1618	5657	0
🕨 💿 transp					14	140.000		14		no	0	0	16	179	0
multMM_1	💮 II Violation				224	2.240E3				no	0	5	684	825	0
multMM_1	💮 II Violation				224	2.240E3				no	0	5	684	825	0
SumMM					43	430.000		43		no	0	2	418	422	0
🕨 🔿 sumMM					43	430.000		43		no	0	2	418	422	0

HIGH LEVEL SYNTHESIS APPROACH HLS DIRECT METHOD PERFORMANCE ANALYSIS

Modules & Loops	Issue Type	Violation Type	Distance	Slack	Latency(cycles)	Latency(ns)	Iteration Latency	Interval	Trip Count	Pipelined	BRAM	DSP	FF	LUT	URAM
				-0.50	12826	1.280E5	-	12827	-	no	230	1770	90654	172655	0
MLS_diffeqn_wotraj_Pipeline_1					29	290.000		29		no	0	0	218	371	0
HLS_diffeqn_wotraj_Pipeline_2					16	160.000	-	16		no	0	0	214	368	0
▶ ⊚ kinematics_c					85	850.000		85		no	0	0	1991	1042	0
HLS_diffeqn_wotraj_Pipeline_3					16	160.000		16		no	0	0	214	368	0
▶ @ dynamics0_c	💮 II Violation				894	8.940E3	-			no	46	686	43720	63867	0
HLS_diffeqn_wotraj_Pipeline_4					16	160.000		16		no	0	Q	214	368	0
					11743	1.170E5		11743		no	107	274	22640	48394	0
▶ @ inv6	📆 II Violation				914	9.140E3				no	2	18	3135	3625	0
▶					11	110.000		11		no	0	2	306	302	0
▶	💮 II Violation				169	1.690E3				no	0	5	516	572	0
o controller_c_Pipeline_VITIS_LOOP_78_1_VITIS_LOOP_78_2					76	760.000		76		no	0	1	208	168	0
controller_c_Pipeline_VITIS_LOOP_39_1_VITIS_LOOP_39_2					71	710.000		71		no	0	1	51	168	0
▶	📆 II Violation				1199	1.199E4				no	0	6	766	865	0
🕨 💿 power					22	220.000		22		no	30	70	4019	11205	0
🕨 💿 power					22	220.000		22		no	30	70	4019	11205	0
▶ ⊚ power					22	220.000		22		no	30	70	4019	11205	0
© controller_c_Pipeline_VITIS_LOOP_78_1_VITIS_LOOP_78_23					43	430.000		43		no	0	0	191	208	0
▶	📆 II Violation				1196	1.196E4				no	0	5	690	850	0
o controller_c_Pipeline_VITIS_LOOP_39_1_VITIS_LOOP_39_24					38	380.000		38		no	0	Q	21	202	0
ocontroller_c_Pipeline_VITIS_LOOP_78_1_VITIS_LOOP_78_26					43	430.000		43		no	0	0	191	208	0
controller_c_Pipeline_VITIS_LOOP_39_1_VITIS_LOOP_39_28					38	380.000		38		no	0	0	21	202	0
▶	📆 II Violation				309	3.090E3				no	0	5	520	582	0
▶	💮 II Violation				259	2.590E3				no	0	5	519	561	0
o controller_c_Pipeline_VITIS_LOOP_78_1_VITIS_LOOP_78_25					76	760.000		76		no	0	1	208	168	0
controller_c_Pipeline_VITIS_LOOP_39_1_VITIS_LOOP_39_27				71	710.000		71		no	Ó	1	51	168	0	
HLS_diffeqn_wotraj_Pipeline_5					27	270.000		27		no	0	O	154	366	0
HIS diffeon wotrai Pineline 6					19	190.000		19		no	0	0	153	366	0

TOP-DOWN, AND BOTTOM-UP APPROACH HLS_DIFFEQN_WOTRAJ CONCLUSIONS

- Acceleration is possible with lower latency than PC and ARM
- Tested by
 - PC (win, linux, macOS), ~1ms
 - ARM (linux): raspberry pi, ~10ms
 - ARM (bare metal): ZCU102, ~20ms
 - PS+PL (qemu on linux): ZCU102, ~300ms
 - PS+PL (bare metal): ZCU102 ~340us (~120us PL algorithm 100MHz)
- Speed up is possible by
 - Choose method of trigonometric function calculations
 - Matrix (add, sum, inv) operation pipelining another approach
 - Prestorage data in other form
 - FLOATING to FIXEDPOINT

HIGH LEVEL SYNTHESIS APPROACH NEW CHALANGE RUNGE-KUTTA ALGORITHM

@brief Discrete robot model r4k solver without controller
 @brief and shared parameters (constants)

@param	t[in] current time
@param	<pre>tnew[out] time after r4k step</pre>
@param	x [in] manipulator state (x)
@param	<pre>xnew[out] new manipulator state (x_new) after r4k</pre>
@param	<pre>vstu [out] control vector XXX(to discuss, DJ: should be input!!!)</pre>
@param	<u>xd</u> [in] desired position
	<u>xpd</u> [in] desired first derivative of position
	<pre>xppd [in] desired secound derivative of position</pre>
@param	
@param	
@return	i void

d <u>diffeqn f4k0 globaldata(double</u> t, double tnew, double dt, float *x, float *xnew, float *vstu, float *xd, float *xpd, float *xppd, float *fq, float *J, float *Mm, float *Cm, float *Gm, float *Bm, float *Dm) {

double buf_t; float f4k x[X_SIZE]; float f4k_x0[X_SIZE]; float f4k_x1[X_SIZE]; float f4k_x2[X_SIZE]; float f4k_x3[X_SIZE]; float f4k_dx0[X_SIZE]; float f4k_dx2[X_SIZE]; float f4k_dx3[X_SIZE]; float f4k_xnew[X_SIZE]; float f4k_xnew[X_SIZE];

memcpy(f4k_x, x, X_SIZE*sizeof(float)); //input -- working only on local values!!!

//1st (0) step:

diffeqn_wotraj0_globaldata(t, f4k x, f4k dx0, vstu, xd, xpd, xppd, fq, J, Mm, Cm, Gm, Bm, Dm); for (int i=0;i<X_SIZE;i++) f4k_x1[i] = f4k_x[i]+dt*f4k_dx0[i]; //2nd (1) step:

diffeqn_wotraj0_globaldata((t+dt/2), f4k_x1, f4k_dx1, vstu, xd, xpd, xppd, fq, J, Mm, Cm, Gm, Bm, Dm); for (int i=0;i<X_SIZE;i++) f4k_x2[i] = f4k_x[i]+dt*f4k_dx1[i];</pre>

//3rd (2) step:

diffeqn_wotraj0_globaldata((t+dt/2), f4k_x2, f4k_dx2, vstu, xd, xpd, xppd, fq, J, Mm, Cm, Gm, Bm, Dm); for (int i=0;i<X_SIZE;i++) f4k_x3[i] = f4k_x[i]+dt*f4k_dx2[i];</pre>

//4th (3) step:

diffeqn_wotraj0_globaldata((t+dt), f4k_x3, f4k_dx3, vstu, xd, xpd, xppd, fq, J, Mm, Cm, Gm, Bm, Dm);
//Runge-Kutta_sum____

for (int i=0;i<X_SIZE;i++) f4k_xnew[i]=f4k_x[i]+dt*(f4k_dx0[i]+2.0*f4k_dx1[i]+2.0*f4k_dx2[i]+f4k_dx3[i])/6.0;</pre>

memcpy(xnew,f4k_xnew, X_SIZE*sizeof(float)); //input -- working only on local values!!!
tnew = t + dt;

• Optimalisation by

- Matrix operation pipelining
- One time trigonometric function computation
- Originally latency: 30 084 cycles
- Matrix loops: 12 826 cycles
- SIN/COS: 8761
- Function rearange: 7001

n" / "Redukować bariery – wspólnie wykorzystywać silne strony"

Conclusions

- 1. Control algorithm was translated to low level languages
- 2. Simple **diffeqn_wotraj** study and proof of concept was performed with satisfying effects
- 3. Complex **diffeqn_f4k0** (4 times diffeqn_wotraj with sum) Runge Kutta was implemented successfully
- 4. TO DO

